
Board Games

By Mike Hahn

Copyright © 2008 Treenimation.net
Date Last Edited: 31-Jul-2008

Table of Contents
Overview.. 1

Introduction ..1
Board Games Overview...1

Board Game Codes ... 2

No-Code: Codeless Programming ...2
Code 1: Automation ...3
Code 2: Move Constraints..3
Code 3: Auto Move...4

Scramble .. 5

Scramble Codeless ...5
Scramble Automation ...8
Scramble Move Constraints..8
Scramble Auto Move...9

Backgammon.. 9

Backgammon Codeless ...9
Backgammon Automation..10
Backgammon Move Constraints..10

Bridge .. 11

Bridge Codeless ...11

Treescript Code Listings ... 13

Chess ...13
Scramble ..16
Backgammon ..23
Bridge ..25

1

Overview

Introduction
[Home]

Treenimation is used to create multiplayer board games, as well as animated games.
You can log on to Treenimation.net and play these games with other Treenimation
users. Treenimation games are coded in a built-in scripting language called
Treescript, and then uploaded to the Treenimation web site. Non-programmers can
create drag-and-drop games, and programmers can add functionality to these
games.

Drag-and-drop board games are constructed out of 5 basic components: 1) Card,
such as a playing card or chess piece; 2) Card-stack, a stack of Card objects; 3)
Board-grid, such as a chess or Go board; 4) Rack-grid, a collection of Card-stack
objects arranged in a row (or column); and 5) Table-grid, a more flexible version of
a Board-grid object (not just a plain grid), such as a Monopoly board.

Board Games Overview
This user guide describes using Treenimation to make multiplayer Scramble,
backgammon and bridge. Non-programmers are restricted to No-Code (codeless
programming) drag-and-drop type games. Code 1 (Automation) is the easiest type
of game programming, which involves automating various aspects of the game-
player environment and game-playing process. Code 2 (Move Constraints), or
checking for illegal moves, is a little harder. Code 3 (Auto Move), playing against the
computer, is the most challenging type of game programming.

Game Coding

 No-Code: Codeless Programming utilizes 5 basic components: 1) Card (a
collection of one or more labels and bitmaps); 2) Card-stack, a stack of Card
objects; 3) Board-grid, a 2-dimensional array of Card-stack objects; 4) Rack-
grid, a one-dimensional array of Card-stack objects; 5) Table-grid, similar to
a Board-grid, but column widths and row heights may vary, and adjacent cells
may be merged into a single cell.

 Code 1: Automation Programming, which is accomplished with custom
Treescript code that relieves some of the tedium of pure drag-and-drop
games, overriding one or more default event handlers.

 Code 2: Move Constraints, or checking for illegal moves, are accomplished
with custom Treescript code which determines whether or not a given rule is
broken.

 Code 3: Auto Move Programming, enabling the user to play against the
computer, requires 4 game-specific classes: 1) Game-state, a mathematical
model of the current game state; 2) Move, a mathematical model of the
current move; 3) Move-generator, which generates the optimum move; and
4) Move-implementer, which carries out the move generated by Move-
generator.

Board Game Codes

No-Code: Codeless Programming
Each of the 3 sample games covered here (Scramble, backgammon, and bridge) is
based on the same basic set of 5 generic drag-and-drop components. These
components enable the game designer to implement simple drag-and-drop versions
of almost any board and card game without coding, hence the term "codeless
programming." Each "codeless" game implementation contains no game-specific
code. That way, even a game designer who is a non-programmer is capable of
creating almost any board game imaginable.

Drag-and-Drop Components

Here are the 5 basic drag-and-drop components, the Card component, which
contains the actual text and/or graphic(s) to be dragged, and its 4 container
components:

• Card: This component corresponds to a playing card, chess piece, Scramble
letter tile, Monopoly player piece, etc. It is always contained in a Card-stack
object.

• Card-stack: A stack of Card objects. Individual Card objects, or entire Card-
stack objects, can be dragged and dropped to other Card-stack objects.

• Board-grid: A 2-dimensional array of Card-stack objects. Each element of
the array has the same width and height.

• Rack-grid: A one-dimensional array of Card-stack objects, oriented
horizontally or vertically.

• Table-grid: A 2-dimensional array of Card-stack objects, in which the column
widths and row heights may vary. Also, adjacent array elements may be
merged into one table cell containing a single Card-stack object. This
component would be a good candidate for a Monopoly board.

Tri-State Design Process

During the game design process, the game designer is always in one of the following
3 states: design-time, in which components are dropped on a form (game window)
and their properties set; run-time, in which the game program is executed (what
the end-user sees); and live-design-time, which is similar to run-time, except that
the "freeze" command has not yet been invoked. The live-design-time state allows
the game designer to drag Card objects to where they will be located at run-time
(when the end-user starts the game). When the game designer is satisfied with the
layout of the game, the freeze command is invoked, saving the current game setup
in a form file with a .XML extension.

2

Code 1: Automation
Since pure drag-and-drop games can at times be a bit tedious for the players, it is
often desirable to override one or more event handlers with custom Treescript code.
Here is a partial list of features that can be accomplished this way. Features that are
relatively difficult to implement are in italics.

Scramble

• Fill rack

• Display no. of letters left

• Add score to total

• Prevent moving letters already down

• Calculate score

• Click, not drag

Bridge

• Deal hand

• Move hand to dummy

• Calculate winner of trick

• Calculate who is declarer

• Calculate who is dealer

• Count NS/WE tricks

• Add score to total

• Calculate score

Backgammon

• Roll dice

• Click, not drag

• Detect gammon/backgammon

• Keep score

Code 2: Move Constraints
One limitation of codeless versions of Scramble and other games is the lack of facility
for preventing illegal moves. A move constraint is a piece of code that determines

3

whether or not the corresponding game rule is broken. Move constraints often work
in conjunction with the game-state object, which encapsulates the current game-
state.

Move constraints which are limited to preventing the dragging of Card or Card-stack
objects from one container object to another can be accomplished without coding.
This is due to the fact that every grid and Card-stack object has a property called
drop-list, which is a list of objects that may accept drag-and-drop operations
originating with the property owner.

Scramble

• Next Button

o Word is connected

o Word is contiguous

o Word is in dictionary

o Interchanged blank is used on same turn

• Double-Click on Board

o Interchange blank if valid

• Drag from Board

o Prevent dragging letters not in current turn

• Drop on Bag

o If 3 of a kind, then accept

o Else if user is scrambling, then accept

Code 3: Auto Move
Playing against the computer requires 4 game-specific classes: Game-state, Move,
Move-generator, and Move-implementer.

Game State

A simplified, mathematical model of the current game state. For example, a chess
board (the game-state of chess) consists of an 8 x 8 matrix of integers. Zero
represents an empty square, 1 = a white pawn, -1 = a black pawn, 2 = a white
knight, etc.

Move

A simplified, mathematical model of the current move. For example, a chess move
consists of 4 integers: the source row/column and the destination row/column.

Move Generator

4

Generates the optimum move.

Move Implementer

Carries out the move generated by Move-generator.

Scramble

Scramble Codeless
Scramble is a board game in which players form words on a 15 x 15 grid, crossword-
style, using the 7 letter tiles on their racks. You can use Treenimation to make a
purely drag-and-drop version of Scramble without doing any coding.

Design-Time

• board: Board-grid object, 15 x 15.

• rack: Rack-grid object of length 7. Boolean property local is set to true,
meaning each player has own copy.

• bag: Card-stack object containing 100 letter tiles (Card objects).

• table-top: Card-stack object used for Scrambling. Boolean property local is
set to true.

• score-grid: Editable-grid object, 6 rows by 2 columns. An Editable-grid is
similar to a StringGrid object in Delphi, except that it can be edited at run-
time (and at live-design-time, of course).

Live-Design-Time

The following form is for design purposes only and is hidden at run-time:

• premium-card: Card object containing one Text-box object, indicating the
type of premium board square.

• premium-grid: Rack-grid object of length 4. Game designer copies and
pastes premium-card into each cell, switches to design mode, and edits Text-
box object of each cell and color of each cell. Boolean property infinite is set
to true, so that dragging from any cell simply copies the single card in the cell
and does not remove it. After creating and editing the premium-grid, the
game designer copies and pastes it to the main Scramble form.

• letter-card: Card object containing 2 Text-box objects, a larger one for the
letter and a smaller one for the point count.

• alpha-grid: Board-grid object, 6 rows by 5 columns. Game designer copies
and pastes letter-card into each cell, switches to design mode, and edits each
Text-box object of each cell. Boolean property infinite is set to true.

• bag-grid: Board-grid object, 10 rows by 10 columns. Game designer drags
letter tiles from alpha-grid object.

5

• bag: Card-stack object. Game designer drags all letter tiles from bag-grid
object. Boolean property random is set to true, meaning that the Card object
obtained by dragging from bag is selected at random. After filling bag, the
game designer copies and pastes it to the main Scramble form.

• board: The premium squares are dragged from the premium-grid object to
the board object. Afterwards the premium-grid object may be deleted, since a
copy exists on the Scramble design form.

• score-grid: The game designer edits all cells in the first column. Entries $P1
- $P4 are replaced by the names of up to 4 players at run-time. The name of
the current player is highlighted. "Current" is short for Current Word Score.
Anyone who uses a blank (or both blanks) must type in the corresponding
letter(s).

Run-Time

• Start of Game: Player names are displayed. Player who goes first is selected
at random and corresponding name is highlighted. The rack is initially empty
and must be filled by dragging letter tiles from the bag.

• Making a Word: Player drags letters from rack to board.

• Scrambling: Player drags letters from rack to table-top, refills rack by
dragging letters from bag to rack, then drags contents of table-top to bag.

• Score Calculation: Player calculates score manually, enters it into "Current"
row of score-grid, adds it to his/her score total and replaces old total with
new total.

• End of Turn: Player clicks on Next button, whose on-click event handler is
pre-configured to call the next-player method of the game-server object.

• Challenging: Any player may challenge by checking the Challenge check
box. Whoever has a dictionary looks up the word and reports on word validity
in the chat window. If it's not a word, player who made the invalid word must
click on Back button (another button with a pre-configured event handler),
and take back the invalid word.

• Filling Rack: If no one challenges, player refills rack by dragging letters from
bag to rack.

6

7

Scramble Automation
By writing some Treescript code, you can create a Scramble game which automates
various aspects of the game, such as displaying a label indicating how many letters
are left in the bag.

Feature List

The following 4 features are relatively easy to implement, by adding code to the
appropriate event handlers:

1. Display no. of letters in bag

2. Add current word score to total

3. Prevent dragging of board letters already down

4. Fill rack at start of turn

Feature #3 requires that a Scramble-specific game-state object be present. This
object has properties for the board, bag, each player's rack, etc. The board property
is a 15 x 15 array of integers, where 0 represents an empty square, a positive value
represents letters from previous turns, and a negative value represents letters from
the current turn.

Scramble Move Constraints
The following is a list of 8 move constraints, each of which corresponds to its own
rule governing the legality of Scramble moves. Four of these constraints affect the
outcome of the user clicking the "Next" button: only if all 4 are true does the next-
player method of the game-server object get called. Two more constraints govern
mouse operations (double-clicking and dragging) on the board, and the final 2
constraints determine whether or not the user may drag the table-top Card-stack to
the bag Card-stack.

Next Button

1. At least one letter placed on board in current turn must be adjacent to a letter
placed on board in a previous turn. If this is the first turn, at least one letter
must cover the center square.

2. If the word is across, all letters must be in the same row. If the word is down,
all letters must be in the same column. There can be no empty squares in the
middle of the word.

3. If challenging is disabled, all newly formed words, including those
perpendicular to the main word, if any, must be in dictionary.

8

4. If interchange-blanks enabled, and use-on-same-turn enabled, then the no.
of blanks placed on board must be greater than or equal to the no. of
interchanged blanks picked up in current turn.

Double-Click on Board

If interchange-blanks enabled, and clicked board square is a blank, and value of
blank exists on rack, then interchange the blank.

Drag from Board

Disable drag if letter being dragged was not placed on board in current turn (see
Feature 3 in Scramble Automation). No code is necessary to prevent dragging of
letter/word premium Card objects, since their draggable property is false. Also, the
user cannot drag a letter tile on top of another letter tile on the board, since the
coverable property of every letter tile is false.

Drop on Bag

The table-top Card-stack is the only object that can be dragged to the bag. The
grabbable property of the table-top is true, meaning that the user can "grab" the
entire table-top by dragging a small semicircular "handle" jutting out of the left
border of the table-top.

1. If three-of-a-kind or four-of-a-kind enabled, and all letters in table-top, if
included with letters on rack, are part of a 3-of-a-kind (or 4-of-a-kind), then
accept drop. Otherwise do next rule.

2. Assume the user is Scrambling. Prompt the user for confirmation: if yes then
accept drop and end user's turn. If no then cancel drop.

Scramble Auto Move
In order to implement playing Scramble against the computer, the following 4 game-
specific classes are required: Game-state, Move, Move-generator, and Move-
implementer.

Backgammon

Backgammon Codeless
The object of the game is to bring all of your game pieces safely home, while trying
to avoid being sent to the “bar” by your opponent. Each turn you roll 2 dice,
determining how many spaces to move your game piece(s).

Design-Time

• board: Board-grid object, 13 columns by 12 rows. Grid width property is set
to zero pixels, Boolean property transparent is set to true. Horizontal offset
(distance between adjacent cards) is set to one quarter of the diameter of a

9

white/black disk. Horizontal alignment property of each cell is set to
"centered".

• board-container: Layer-book object with 2 layers. Bottom layer contains a
bitmap of triangular, alternating light/dark "points". Top layer contains board
object.

• white-stack: Card-stack object containing one Card object (a white, circular
disk). Boolean property infinite is set to true.

• black-stack: Card-stack object containing one Card object (a black, circular
disk). Boolean property infinite is set to true.

• score-grid: Editable-grid object, 2 columns by 2 rows. An Editable-grid is
similar to a StringGrid object in Delphi, except that it can be edited at run-
time. Boolean property persistent is set to true, meaning that the contents of
this grid will survive a call of the new-game method of the game-server
object.

• dice: Rack-grid object of length 2. Both cells contain a Card-stack object
which consists of a stack of 6 bitmap-containing Card objects. Boolean
property random of both Card-stack objects is set to true.

• double-cube: Card-stack object is a stack of six string-containing Card
objects.

• undo-double: Card-stack object.

Run-Time

At run-time, the player clicks on both dice to "roll" them, and then moves his or her
men, dragging them from the source grid squares to the destination grid squares.
The player may double by clicking the double cube, which automatically moves the
top card in the double cube Card-stack to the undo-double Card-stack. To undo a
double operation, the player simply clicks on the undo-double Card-stack.

Backgammon Automation
Feature List

The following 2 features are relatively easy to implement, by adding code to the
appropriate event handlers:

1. Roll dice at beginning of every turn

2. Update player scores at end of every game

Backgammon Move Constraints
The following is a list of 8 move constraints, each of which corresponds to its own
rule governing the legality of backgammon moves. Six of these constraints have to
do with dragging and dropping pieces on the board, and the other 2 constraints

10

affect the outcome of the user clicking the "Next" button: only if none of them are
violated does the next-player method of the game-server object get called.

Drag from Board

1. Drag is enabled only if piece being dragged belongs to current player
(exception: if current point contains exactly one piece of current player, and
piece being dragged is the only piece of opposing player on this point, then
enable drag).

2. Drag is disabled if piece being dragged is not on the bar and at least one
piece of current player is on the bar.

Drop on Board

1. Disable drop if destination point contains more than one piece belonging to
opposing player.

2. Let x = value of distance moved. If x = 0 then enable drop. Otherwise,
disable drop if x not found in list of outstanding move values. In case of
doubles, this list initially contains 4 integers (otherwise only 2 integers).

3. Disable drop if destination point is the home point and at least one piece
belonging to current player is not in position to bear off.

4. Disable drop if piece belongs to opposing player and destination point is not
the bar.

Next Button

1. Enable next button if list of outstanding move values is empty.

2. Otherwise, disable next button if the following is true: for all outstanding
move values, if any move value is equal to at least one move value in the list
of all possible moves for current player.

Bridge

Bridge Codeless
One of the most popular and challenging card games. The object of the game is to
take as many “tricks” as possible. Each hand, you and your teammate bid against
the opposing 2-player team to decide how many tricks are to be taken by the top
bidding team. After the bidding is over, each player plays a card and the highest card
takes the trick, and play continues until all cards have been played.

Design-Time

• hand: Rack-grid object of length 4 (no. of suits). Boolean property local is set
to true, meaning each player has own copy. Orientation is vertical, not

11

horizontal, with horizontal offset (distance between adjacent cards) equal to
150 percent of the width of an upper-case letter.

• dummy: Rack-grid object of length 4 (no. of suits). Boolean property local is
set to false, meaning only one copy exists (all players share the same copy).
Orientation is vertical, not horizontal, with horizontal offset (distance between
adjacent cards) equal to 150 percent of the width of an upper-case letter.

• bidding-grid: Table-grid object, 3 columns, as many rows as will fit in its
space. Column headings: Player Name, Bid Level, Suit. The current player
name (North, South, West, or East) is displayed in the first column, by
entering $P0 in that column. The 2nd and 3rd columns are each associated
with a combo box, enabling the user to select desired bid level and suit
without having to type it in.

• dummy-container: A tabbed notebook object with 3 tabs, one for the
dummy, one for the bidding-grid, and one for the score-grid.

• score-grid: Editable-grid object, 2 columns, as many rows as will fit in its
space. An Editable-grid is similar to a StringGrid object in Delphi, except that
it can be edited at run-time (and at live-design-time, of course). Persistent
property is set to true, meaning that the contents of this grid will survive a
call of the new-game method of the game-server object.

• deck: Std-deck object (a standard 52-card deck of playing cards).

• trick: Card-stack object, with horizontal offset (distance between adjacent
cards) equal to 150 percent of the width of an upper-case letter.

Run-Time

• Dealing: All 4 players must deal 13 cards to themselves, by dragging cards
from the deck to their hands.

• Bidding: Name of current player (North, South, West, or East) is displayed in
1st column of bidding-grid, when clicked on. Current player selects bid level
and suit using combo boxes in 2nd and 3rd columns of bidding-grid. At end of
bidding, declarer's partner drags each Card-stack (suit) in his/her hand to
dummy.

• Playing a Card: Player clicks on desired card, sending it to the trick Card-
stack, and then clicks on "Next Player" button (or presses Enter).

• Taking the trick: Trick-taker clicks on "handle" of trick Card-stack, sending
it to the deck Card-stack. Trick-taker then clicks on appropriate trick-counter
Counter-object (there are 2 of these: North/South and West/East).

• End of hand: Score-keeper calculates score manually, enters it into score-
grid, and clicks on the "New Hand" button, which is like a "New Game" button
except that the score Table-grid is not re-initialized.

12

Treescript Code Listings

Chess
The source code listing below is a partial implementation of a computer chess game.

Source Code
 (class (public) Chess-form extends Form
 var (auto) (
 Game-server game-server;
 Board-grid board-grid;
 ...
)
 var (private) (
 Game-state game-state;
 ...
)
 (proc (auto) board-grid_change (Event e)
 do (
 : game-state (set-board (: e row) (: e col) (: e intval));
)
)
 (proc (auto) game-server_auto-move (Event e)
 var (
 Move-generator mg (new Move-generator game-state);
 Move-implementer mi (new Move-implementer game-state);
)
 do (
 : mi do-move (: mg get-move);
)
)
 ...
)
(class Game-state
 var (private) (
 array 2 int board (new int 8 8);
 boolean white;
 boolean check;
 boolean en-passant;
 int en-passant-col;
 Player-state white-player;
 Player-state black-player;
)
 (func (public) int get-board (int row; int col)
 do (
 return (board row col);
)
)
 (proc (public) set-board (int row; int col; int val)
 do (
 = (board row col) val;
)
)
 (func (public) Player-state get-player (boolean white)

13

 do (
 if white then (
 return white-player;
)
 else (
 return black-player;
);
)
)
 (proc (public) set-player
 (Player-state player; boolean white)
 do (
 if white then (
 = white-player player;
)
 else (
 = black-player player;
);
)
)
)
(class Player-state
 var (private) (
 boolean castle-king-side;
 boolean castle-queen-side;
)
 (func (public) boolean is-castle-king-side do (
 return castle-king-side;
))
 (proc (public) set-castle-king-side (boolean val) do (
 = castle-king-side val;
))
 (func (public) boolean is-castle-queen-side do (
 return castle-queen-side;
))
 (proc (public) set-castle-queen-side (boolean val) do (
 = castle-queen-side val;
))
)
(class Move
 var (private) (
 int source-row;
 int source-col;
 int dest-row;
 int dest-col;
 boolean castling;
 boolean en-passant-capture;
 boolean queened-pawn;
)
 (func (public) int get-source-row do (
 return source-row;
))
 (func (public) int get-source-col do (
 return source-col;
))
 (func (public) int get-dest-row do (
 return dest-row;

14

))
 (func (public) int get-dest-col do (
 return dest-col;
))
 ...
)
(class Move-generator
 var (private) (
 Game-state game-state;
)
 (cons Move-generator (Game-state gs)
 do (
 = game-state gs;
)
)
 (func (public) Move get-move
 var (private) (
 Move best-move;
)
 do (
 { calculate optimum move }
 ...
 return best-move;
)
)
)
(class Move-implementer
 var (private) (
 Game-state game-state;
)
 (cons Move-implementer (Game-state gs)
 do (
 = game-state gs;
)
)
 (proc (public) do-move (Move move)
 do (
 { handle special cases... }
 if (== move nil) then (
 { check mate }
)
 elseif (move is-castling) then (
 { computer is castling }
)
 elseif (move is-en-passant-capture) then (
 { must remove captured pawn }
)
 elseif (move is-queened-pawn) then (
 { promote pawn to queen }
)
 else ({ normal case }
 : board-grid (auto-drop
 (: move get-dest-row)(: move get-dest-col)
 (: board-grid (auto-drag
 (: move get-source-row)(: move get-source-col)))
);
);

15

)
)
)

Scramble
Scramble Codeless

The following code is generated automatically by Treescript:

import (Hidden-form)

(class (public) Scrab-form extends Form
 var (auto) (
 Game-server game-server;
 Button next-btn;
 Button back-btn;
 Button new-game-btn;
 Button exit-btn;
 Board-grid board-grid;
 Rack-grid rack-grid;
 Card-stack bag;
 Card-stack table-top;
 Editable-grid score-grid;
)
 (proc (public static) main (String-list args)
 var (
 Scrab-form form1 (new Scrab-form);
 Hidden-form form2 (new Hidden-form);
)
)
 (proc (public) Scrab-form
 do (
 : game-server init-game;
 show;
)
)
 (proc (auto) next-btn_click (Event e)
 do (
 : game-server next-player;
)
)
 (proc (auto) back-btn_click (Event e)
 do (
 : game-server previous-player;
)
)
 (proc (auto) new-game-btn_click (Event e)
 do (
 : game-server new-game;
)
)
 (proc (auto) exit-btn_click (Event e)
 do (
 : game-server quit-player;
)

16

)
)

This class belongs in a separate source file:

(class (public) Hidden-form extends Form
 var (auto) (
 Card premium-card;
 Rack-grid premium-grid;
 Card letter-card;
 Board-grid alpha-grid;
 Board-grid bag-grid;
 Card-stack bag;
)
)

Scramble Automation

Feature No. 1: Display no. of letters in bag

(proc (auto) bag_change (Event e)
 do (
 : bag-count-lbl (set-caption (: bag get-count));
)
)

Feature No. 2: Add current word score to total

(proc (auto) next-btn_click (Event e)
 var (int i)
 do (
 = i (- (: game-server get-player-no) 1); \ get current player no.
 : score-grid (set-cell i 1 (+
 (str-to-int (: score-grid (get-cell i 1)))
 (str-to-int (: score-grid (get-cell 4 1)))
));
 : game-server next-player;
)
)

Feature No. 3: Prevent dragging of board letters already down

(proc (auto) board-grid_change (Event e)
 do (
 : game-state (set-board (: e row) (: e col)
 (- (abs (: board-grid (cells (: e row) (: e col))
 get-top value))));
)
)

(proc (auto) next-btn_click (Event e)
 var (int i; int j; int m; int n)
 do (
 = m (- (: board-grid get-row-count) 1);
 = n (- (: board-grid get-col-count) 1);
 for i (0 m) do (

17

 for j (0 n) do (
 : game-state (set-board i j
 (abs (get-board i j)));
);
);
 : game-server next-player;
)
)

(proc (auto) board-grid_drag (Event e)
 do (
 = (: e can-drag) (<
 (: game-state (get-board (: e row) (: e col))) 0);
)
)

Feature No. 4: Fill rack at start of turn

(proc (event) next-btn_click (Event e)
 do (
 fill-rack;
 : game-server next-player;
)
)

{ fill all racks at start of game }

(proc init-game
 var (int i)
 do (
 : game-server first-player;
 for i (1 (: game-server get-player-count)) do (
 fill-rack;
 : game-server next-player;
);
 { rest of init-game... }
)
)

(proc fill-rack
 var (int i)
 do (
 for i (0 (- (: rack-grid count) 1)) do (
 if (<= (: bag count) 0) then (
 break;
);
 if (== (: rack-grid (cells i) count) 0) then (
 : rack (cells i) push (: bag pop);
);
);
)
)

Scramble Move Constraints
var (private) (
 boolean challenging;

18

 boolean interchange-blanks;
 boolean use-on-same-turn;
 boolean three-of-a-kind;
 boolean four-of-a-kind;
)
(proc (auto) next-btn_click (Event e)
 var (String msg)
 do (
 = msg '';
 if (== (: game-state (get-board 7 7)) 0) then (
 = msg 'Center square not covered';
)
 elseif (not is-word-connected) then (
 = msg 'Word not adjacent to other words';
)
 elseif (not is-word-contiguous) then (
 = msg 'Letters in word not contiguous';
)
 elseif (not is-challenging) then (
 = msg get-words-not-in-dict;
 if (<> msg '') then (
 = msg (+ 'Word(s) not in dictionary: ' msg);
);
)
 elseif (and is-interchangeable-blanks is-use-on-same-turn
 (< get-blank-count-this-turn get-interchg-blank-count))
 then (
 = msg 'Not enough blank(s) used';
);

 if (== msg '') then (
 : game-server next-player;
)
 else (
 : show-err-msg msg;
);
)
)
(proc (auto) board_dbl-click (Event e)
 do (
 if (and is-interchangeable-blanks
 (is-blank-at (: e row) (: e col))
 (has-letter (get-blank-val-at (: e row) (: e col))))
 then (
 do-blank-interchange (: e row) (: e col);
);
)
)
(proc (auto) bag_drop (Event e)
 do (
 if (and is-three-of-a-kind is-part-of-3-of-a-kind) then (
 : e (set-accept true);
)
 elseif (and is-four-of-a-kind is-part-of-4-of-a-kind) then (
 : e (set-accept true);
)
 elseif (== (message-dlg 'Do you wish to Scramble?'

19

 mt-confirmation (mb-yes mb-no)) mr-yes) then (
 : e (set-accept true);
 : game-server next-player;
)
 else (
 : e (set-accept false);
);
)
)

{ Helper Methods }

(func boolean is-challenging do (return challenging;))
(func boolean is-interchangeable-blanks
 do (return interchangeable-blanks;))
(func boolean is-use-on-same-turn do (return use-on-same-turn;))
(func boolean is-three-of-a-kind do (return three-of-a-kind;))
(func boolean is-four-of-a-kind do (return four-of-a-kind;))

(func boolean is-word-connected do (...))
(func boolean is-word-contiguous do (...))
(func String get-words-not-in-dict do (...))
(func int get-blank-count-this-turn do (...))
(func int get-interchg-blank-count do (...))
(func boolean is-blank-at (int row; int col) do (...))
(func boolean has-letter (int letter) do (...))
(func int get-blank-val-at (int row; int col) do (...))
(proc do-blank-interchange (int row; int col) do (...))
(func boolean is-part-of-3-of-a-kind do (...))
(func boolean is-part-of-4-of-a-kind do (...))
(proc show-err-msg (String msg) do (...))

Scramble Auto Move

The (abbreviated) source code listing below shows how to implement Scramble using
the on-change events and the 4 Auto Move classes.

On Change Events

(class (public) Scrab-form extends Form
 var (auto) (
 Game-server game-server;
 Board-grid board-grid;
 Rack-grid rack-grid;
 Card-stack bag;
 Card-stack table-top;
 Editable-grid score-grid;
)
 var (private) (
 Game-state game-state;
 ...
)
 (proc (auto) board-grid_change (Event e)
 do (
 : game-state (set-board (: e row) (: e col) (: e intval));

20

)
)
 (proc (auto) rack-grid_change (Event e)
 do (
 : game-state curr-player (set-rack (: e col) (: e intval));
)
)
 (proc (auto) game-server_auto-move (Event e)
 var (
 Move-generator mg (new Move-generator game-state);
 Move-implementer mi (new Move-implementer game-state);
)
 do (
 : mi do-move (: mg get-move);
)
)
 ...
)

Game State

(class Game-state
 var (private) (
 array 2 int board (new int 15 15);
 Player-state curr-player;
 list Player-state player-list;
)
 (func (public) int get-board (int row; int col)
 do (
 return (board row col);
)
)
 (proc (public) set-board (int row; int col; int val)
 do (
 = (board row col) val;
)
)
)
(class Player-state
 var (private) (
 array int rack (new int 7);
)
 (func (public) int get-rack (int col)
 do (
 return (rack col);
)
)
 (proc (public) set-rack (int col; int val)
 do (
 = (rack col) val;
)
)
)

Move

21

(class Move
 var (private) (
 array int mv-word (new int 7);
 boolean across;
 int row;
 int col;
 int blank-pos-1;
 int blank-pos-2;
)
 (func (public) int get-mv-word (int idx)
 do (
 return (mv-word idx);
)
)
 (proc (public) set-mv-word (int idx; int val)
 do (
 = (mv-word idx) val;
)
)
 (func (public) int get-row do (
 return row;
))
 (func (public) int get-col do (
 return col;
))
 (func (public) int get-board-row (int i) do (
 { calculate board row of i-th letter }
))
 (func (public) int get-board-col (int i) do (
 { calculate board col of i-th letter }
))
 (func (public) int get-rack-col (int i) do (
 { calculate rack col of i-th letter }
))
 ...
)

Move Generator

(class Move-generator
 var (private) (
 Game-state game-state;
)
 (cons Move-generator (Game-state gs)
 do (
 = game-state gs;
)
)
 (func (public) Move get-move
 var (private) (
 Move best-move;
)
 do (
 { calculate optimum move }
 ...
 return best-move;
)

22

)
)

Move Implementer

(class Move-implementer
 var (private) (
 Game-state game-state;
)
 (cons Move-implementer (Game-state gs)
 do (
 = game-state gs;
)
)
 (proc (public) do-move (Move move)
 var (
 int i;
 int ltr-val;
)
 do (
 { handle special cases... }
 if (== (: move get-row) -1) then (
 { player is scrabbling or passing }
)
 else ({ normal case }
 for i (0 6) do (
 if (or (== i (: move get-blank-pos-1))
 (== i (: move get-blank-pos-2))) then (
 = ltr-val 27;
 \ store blank info...
)
 else (
 = ltr-val (: move (get-mv-word i));
);
 if (== ltr-val 0) then (
 break;
);
 board-grid (auto-drop
 (: move (get-board-row i)) \ board row of i-th letter
 (: move (get-board-col i)) \ board col of i-th letter
 (: rack-grid (auto-drag (: move (get-rack-col i))))
);
);
);
)
)
)

Backgammon
Backgammon Codeless

The following code is generated automatically by Treescript:

(class (public) Bg-form extends Form

23

 var (auto) (
 Game-server game-server;
 Button next-btn;
 Button back-btn;
 Button new-game-btn;
 Button exit-btn;
 Board-grid board-grid;
 Layer-book board-container;
 Bitmap board-bitmap;
 Card-stack white-stack;
 Card-stack black-stack;
 Editable-grid score-grid;
 Rack-grid dice;
 Card-stack double-cube;
 Card-stack undo-double;
)
 (proc (public static) main (String-list args)
 var (
 Bg-form form1 (new Bg-form);
)
)
 (proc (public) Bg-form
 do (
 : game-server init-game;
 show;
)
)
 (proc (auto) next-btn_click (Event e)
 do (
 : game-server next-player;
)
)
 (proc (auto) back-btn_click (Event e)
 do (
 : game-server previous-player;
)
)
 (proc (auto) new-game-btn_click (Event e)
 do (
 : game-server new-game;
)
)
 (proc (auto) exit-btn_click (Event e)
 do (
 : game-server quit-player;
)
)
)

Backgammon Automation

Feature No. 1: Roll dice at beginning of every turn

(proc (auto) next-btn_click (Event e)
 do (
 : game-server next-player;
 roll-dice;

24

)
)
(proc roll-dice
 do (
 : dice-grid init;
)
)

Feature No. 2: Update player scores at end of every game

(proc (auto) new-game-btn_click (Event e)
 do (
 update-score-grid;
 : game-server new-game;
)
)
{
 white-cb: check box with caption "White Wins"
 win-typ-grp: radio group with 3 radio buttons:
 - Normal
 - Gammon
 - Backgammon
}
(proc update-score-grid
 var (
 int score-row;
 int score;
)
 do (
 = score-row (? (: white-cb checked) 0 1);
 = score (* (+ 1 (: win-typ-grp item-index))
 (str-to-int (: double-cube get-top
 text-boxes get-obj get-text))
);
 : score-grid (set-cell score-row 1 (+ score
 (str-to-int (: score-grid (get-cell score-row 1))))
);
)
)

Bridge
Bridge Codeless

The following code is generated automatically by Treescript:

(class (public) Bridge-form extends Form
 var (auto) (
 Game-server game-server;
 Button next-btn;
 Button back-btn;
 Button new-hand-btn;
 Button exit-btn;
 Rack-grid hand;
 Rack-grid dummy;

25

 Card-stack trick;
 Std-deck deck;
 Table-grid bidding-grid;
 Editable-grid score-grid;
 Tabbed-notebook dummy-container;
)
 (proc (public static) main (String-list args)
 var (
 Bridge-form form1 (new Bridge-form);
)
)
 (proc (public) Bridge-form
 do (
 : game-server init-game;
 show;
)
)
 (proc (auto) next-btn_click (Event e)
 do (
 : game-server next-player;
)
)
 (proc (auto) back-btn_click (Event e)
 do (
 : game-server previous-player;
)
)
 (proc (auto) new-hand-btn_click (Event e)
 do (
 : game-server new-game;
)
)
 (proc (auto) exit-btn_click (Event e)
 do (
 : game-server quit-player;
)
)
)

26

